
Statistical Evaluation of Different Surface Precipitation-Type Algorithms and Its

Implications for NWP Prediction and Operational Decision-Making

HEATHER DAWN REEVES,a,b DANIEL D. TRIPP,a,b MICHAEL E. BALDWIN,a,b AND ANDREW A. ROSENOWa,b

a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma
b NOAA/National Severe Storms Laboratory, Norman, Oklahoma

(Manuscript received 9 May 2023, in final form 20 September 2023, accepted 21 September 2023)

ABSTRACT: Several new precipitation-type algorithms have been developed to improve NWP predictions of surface precip-
itation type during winter storms. In this study, we evaluate whether it is possible to objectively declare one algorithm as supe-
rior to another through comparison of three precipitation-type algorithms when validated using different techniques. The
apparent skill of the algorithms is dependent on the choice of performance metric}algorithms can have high scores for some
metrics and poor scores for others. It is also possible for an algorithm to have high skill at diagnosing some precipitation types
and poor skill with others. Algorithm skill is also highly dependent on the choice of verification data/methodology. Just by
changing what data are considered “truth,” we were able to substantially change the apparent skill of all algorithms evaluated
herein. These findings suggest an objective declaration of algorithm “goodness” is not possible. Moreover, they indicate that
the unambiguous declaration of superiority is difficult, if not impossible. A contributing factor to algorithm performance is un-
certainty of the microphysical processes that lead to phase changes of falling hydrometeors, which are treated differently by
each algorithm, thus resulting in different biases in near 208C environments. These biases are evident even when algorithms
are applied to ensemble forecasts. Hence, a multi-algorithm approach is advocated to account for this source of uncertainty.
Although the apparent performance of this approach is still dependent on the choice of performance metric and precipitation
type, a case-study analysis shows it has the potential to provide better decision support than the single-algorithm approach.

SIGNIFICANCE STATEMENT: Many investigators are developing new-and-improved algorithms to diagnose the surface
precipitation type in winter storms. Whether these algorithms can be declared as objectively superior to existing strategies is
unknown. Herein, we evaluate different methods to measure algorithm performance to assess whether it is possible to state
one algorithm is superior to another. The results of this study suggest such claims are difficult, if not impossible, to make, at
least not for the algorithms considered herein. Because algorithms can have certain biases, we advocate a multi-algorithm ap-
proach wherein multiple algorithms are applied to forecasts and a probabilistic prediction of precipitation type is generated.
The potential value of this is demonstrated through a case-study analysis that shows promise for enhanced decision support.

KEYWORDS: Algorithms; Numerical analysis/modeling; Forecast verification/skill

1. Introduction

Correct prediction of surface precipitation type has obvious
importance for winter storms. Currently, precipitation type is de-
termined within the National Weather Service (NWS) using post-
processing algorithms that are applied to NWP output. The
original suite of algorithms developed for this purpose has fairly
simple logic that uses properties of the vertical temperature pro-
files, such as the depths and temperatures of elevated warm
layers or surface-based subfreezing layers to determine the phase
(Ramer 1993; Baldwin et al. 1994; Bourgouin 2000). These have
been in use since the early 2000s. While efficient and easy to un-
derstand, they struggle with differentiating freezing rain (FZRA)
from ice pellets (PL; Bourgouin 2000; Manikin et al. 2004;
Manikin 2005; Wandishin et al. 2005; Reeves et al. 2014;
Reeves 2016), motivating several recent efforts to develop im-
proved algorithms (e.g., Benjamin et al. 2016; Reeves et al. 2016;
Birk et al. 2021; Harrison et al. 2022; Filipiak et al. 2023). This
flush of research raises important questions, namely, what is the
best method to evaluate the performance of precipitation-type

algorithms and are there special considerations to an algorithm-
performance assessment that could influence its use by decision-
makers? The aim of this paper is to address these questions.

There are now multiple approaches used in precipitation-type
algorithms. Some are simple upgrades to the first-generation al-
gorithms used by the NWS wherein decision points that led to
poor performance have been improved (Birk et al. 2021; Lu et al.
2021). Some investigators use machine learning to address this
problem (e.g., Harrison et al. 2022; Filipiak et al. 2023). Recog-
nizing that precipitation type can be influenced by microphysical
controls such as riming and partial melting/refreezing, some re-
searchers have developed algorithms that incorporate micro-
physical controls, such as predicted mixing ratios or that use bin
microphysics to explicitly compute the phase (Benjamin et al.
2016; Reeves et al. 2016; Gascón et al. 2018; Cholette et al.
2020). Regardless of the approach, the obvious goal of all these
investigators is to create an algorithm with good performance
metrics that perhaps even bests the efforts of others. These two
ideas are referred to herein as “goodness,” which is an absolute
measure of algorithm performance with respect to performance
metrics, and “betterness,” which is the superior performance of
one algorithm over another as determined using performance
metrics (Murphy 1993).
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There is no clear guidance on best practices for evaluating a
precipitation-type algorithm. As a result, different metrics are
often used and applied to very different datasets. For example,
Reeves et al. (2014) used observed sounding data to verify sev-
eral algorithms and included only events where the phase was
unchanged during the 40 min following sounding launch times.
Others have used model soundings as input and validated
against the observed precipitation type at the top of the hour
(Ikeda et al. 2013; Benjamin et al. 2016). Some investigators use
the Automated Surface Observation Station (ASOS; NOAA
1998) network as ground truth (e.g., Ikeda et al. 2013; Reeves
et al. 2014) and others have used crowd-sourced data from the
meteorological Phenomena Identification Near the Ground
(mPING) project (e.g., Elmore et al. 2015; Harrison et al. 2022).
Influences of the choice of input and ground truth data on al-
gorithm verification were explored in Reeves (2016) who
found that these choices can have a profound impact on the
apparent performance of algorithms. An unexplored facet to
precipitation-type verification is the choice of performance
metrics. These also vary between investigators with the most
popular being the probability of detection (POD), false alarm
ratio (FAR), and one or more measures of skill such as the
critical success index (CSI) or Heidke skill score (HSS). Each
of these represents a unique way of defining goodness, and it
is unclear what metrics are most appropriate for precipitation-
type evaluation. Hence, it is unknown whether different con-
clusions may be drawn about the goodness and betterness of
algorithms based on the choice of verification metric. How
this might dampen or amplify dependencies on the choice of
ground truth, as discussed in Reeves (2016), is also unknown.

The potentially different conclusions that varying metrics may
yield regarding goodness and betterness raise several questions:
What performance metric(s) is/are relevant for precipitation-type
verification? If more than one metric is required to fully appreci-
ate the performance of an individual algorithm, what happens
when intercomparing algorithms and the different metrics sug-
gest different “winners” or the results change depending on what
phase is being evaluated? Is it possible to alter the outcomes by
making honest and defendable choices in how the verification
data are processed and defined? And last, is a competition to de-
clare a winner appropriate or could the diversity of solutions pro-
vided by an array of algorithms be of greater operational utility?
These questions are addressed herein through comparison of
three modern precipitation-type algorithms when verified using
different performance metrics and datasets.

2. Methodology

a. Algorithms used for the evaluation

Three modern precipitation-type algorithms are compared
in this paper. These are the operational method used by the
HRRR model (HP; Benjamin et al. 2016), the modified Bour-
gouin algorithm (MB; Bourgouin 2000; Birk et al. 2021), and
the Spectral-Bin Classifier (SBC; Reeves et al. 2016). The HP
output is directly accessed via the archived gridded data avail-
able through Amazon Web Services. Because the HRRRmodel
only outputs precipitation type for forecasts and not analyses,
1-h HRRR forecasts are used. The HP precipitation type is

accessed directly from the HRRR archive, while MB and SBC
are computed using temperature and humidity profiles from the
1-h forecast pressure coordinate data. [Sensitivity experiments
using the data in its native, terrain-following coordinates do not
change the results of this study (not shown).] Hence, all three al-
gorithms have equitable thermodynamic input.

The methodology used by each of the above algorithms is
quite different. HP uses the HRRR-predicted mixing ratios in
concert with the precipitation rate and 2-m temperature to di-
agnose the phase. MB uses properties of the thermal profile,
such as the area between the 08C isotherm and the elevated
warm layer. SBC uses a stripped-down bin microphysics scheme
to explicitly predict the liquid-water fraction (LWF) of falling
hydrometeors, which it uses along with the wet-bulb tempera-
ture (Tw) to assign the phase. The manner in which all three of
these algorithms were developed and initially evaluated is inde-
pendent of the data being used for input/verification herein.

A minor modification to MB is required for this study. In its
original form, this algorithm diagnoses probabilities of each of
the four cardinal classes of rain (RA), snow (SN), FZRA, and
PL. To bring it into alignment with the deterministic declara-
tions of HP and SBC, MB is modified so that it also makes de-
terministic declarations. Any phase whose probability is greater
than 50% is assumed to be a constituent of a deterministic cate-
gory. Several modifications are also made to the SBC to address
observed shortcomings as described in section 2b.

The types of categories diagnosed by each algorithm are pro-
vided in Table 1. They are all capable of diagnosing the four car-
dinal categories of RA, SN, FZRA, and PL as well as several
mixes. All three attempt to discriminate between SN and non-
classical FZRA (i.e., FZRA that occurs in a completely subfreez-
ing profile due to a lack of ice nucleation). The HRRR model
has a layer of postprocessing that shifts some RA and FZRA di-
agnoses into their corresponding drizzle (DZ) category that is
based on the precipitation rate. These categorical shifts are not

TABLE 1. The categories of precipitation diagnosed by each
precipitation-type algorithm evaluated in this paper.

Type HP MB SBC

RA � � �

SN � � �

FZRA � � �

PL � � �

RASN � � �

RAPL � � �

RAPLSN � �

PLSN � � �

FZRASN � �

FZRAPL � � �

FZAPLSN � �

DZ �

DZSN �

DZPL �

DZPLSN �

FZDZ �

FZDZSN �

FZDZPL �

FZDZPLSN �
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archived as a part of the HRRR dataset. SBC has also had some
adaptations made that allow it to diagnose DZ categories
(Reeves et al. 2022), but these modifications currently rely on ra-
dar observations and, therefore, are not used herein. MB does
not have a capability to diagnose DZ. Since DZ is not diagnosed
by all algorithms, it is not included in this study.

All three of the algorithms have certain conditions under
which no phase is declared because the profile is assumed to be
too dry for precipitation (or not enough precipitation occurred).
In HP, this is based on a minimum hourly precipitation rate. MB
uses a layer-averaged relative humidity (RH), and SBC uses a
combined dewpoint temperature depression (Tdd) and RH as de-
scribed in section 2b. Hence, the algorithms are different in this
regard and have a different number of unclassified observations.
HP has the highest number of these occurrences. Of particular
note is SN}about 9% of these occurrences have no diagnosis.
MB misses about 4% of all SN occurrences and smaller amounts
of RA and RASN. SBC misses less than 1% of any one cate-
gory. All statistics in this paper only include observation/forecast
pairs where there is a diagnosis made by all algorithms.

b. Modifications made to the SBC

Three alterations are made to the SBC’s logic to improve
its discrimination of SN. First, the so-called precipitation
top (PTOP), which is used to declare the starting phase of

hydrometeors at the top of the column, is modified to better
discriminate between SN and nonclassical FZRA. In the
modification, PTOP is set to be the top of the bottom-most
layer, where Tdd is less than or equal to 68C and RH is
greater than 60%. If this condition is never met, the algo-
rithm declares PTOP as the top-most layer with RH greater
than 80%. If neither condition is met, no precipitation type
is diagnosed. Second, the method for discriminating non-
classical FZRA from SN is modified to account for poten-
tial ice nucleation below PTOP for soundings whose PTOPs
are greater than the assumed ice-nucleation temperature of
268C. If the minimum Tw between the surface and 3 km
above ground level is less than ice nucleation, SN is diag-
nosed for these kinds of profiles. Last, the integrated LWF
threshold to discriminate between RASN and SN was in-
creased from 15% to 60%. All of these changes were made
in response to observed deficiencies in the SBC’s perfor-
mance uncovered in the process of conducting this
research.

c. Verification data

The ground truth used in this paper is from the ASOS net-
work at commercial airports and the Automated Weather
Observation System (AWOS) level III/IV stations (Fig. 1).
Both ASOS and AWOS-III/IV are capable of automatically
detecting RA and SN. Nearly all of the ASOS sites used in
this study have a FZRA sensor and/or have Contract Weather
Observer (CWO) support to curate the automated reports.
Categories of precipitation besides RA, SN, and FZRA (e.g.,
FZDZ, mixes, and PL) are only reported when a CWO aug-
ments the report (NOAA 1998). Only some AWOS sites
have the capability to detect FZRA. Different combinations
of ASOS and AWOS are used in the various sensitivity tests
performed in section 3.

The verification period is from the 2016/17 to 2020/21 win-
ter seasons (October–March) and includes 11 different cate-
gories of precipitation. While the ASOS archive we accessed
has 5-min observations, most experiments use only the data at
the top of the hour. Table 2 provides an accounting of each
observation type at the top of the hour for the different sensi-
tivity tests performed in this study. Since the High-Resolution

FIG. 1. The locations of all precipitation-type observing station
networks used in this study. ML-Hub refers to medium- and large-
hub airports that have an ASOS installation.

TABLE 2. The total number of each category of precipitation type for all experiments conducted herein. The columns labeled AP,
LD, Jan17, QC, ML-Hub, and GS reference specific experiments described in section 3b.

Type ASOS AWOS AP LD Jan17 QC ML-Hub GS

RA 241 833 216 069 512 170 246 9080 238 317 31 183 23 803
SN 117 708 210 906 1140 93 573 6377 113 109 9823 7846
FZRA 4651 300 838 2846 466 3703 367 133
PL 310 21 48 73 23 191 97 15
RASN 1781 } 46 } 73 1592 493 165
RAPL 454 } 49 } 28 159 144 13
RAPLSN 86 } 4 } 5 27 24 }

PLSN 555 14 71 50 18 199 157 7
FZRASN 200 } 52 } 7 186 50 14
FZRAPL 351 } 113 } 31 249 109 10
FZAPLSN 60 } 14 } 1 36 16 1
Total 376 396 427 010 2887 266 788 16 109 357 768 42 463 32 007
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Rapid Refresh (HRRR; Weygandt et al. 2009) data are used
to initialize each algorithm, only times when archived HRRR
data are available are included in Table 2. Observations that
include graupel, snow grains, drizzle, freezing drizzle, or un-
known precipitation type reports are discarded as these are not
categories all of the algorithms diagnose. About two-thirds of
the total number of ASOS observations are of RA. Refreezing
precipitation types}FZRA, PL, and mixes that include these
types}comprise only about 2% of the total number of ASOS
observations, consistent with previous investigations (Reeves
2016; Landolt et al. 2019). By contrast, refreezing precipitation
types comprise only 0.08% of all AWOS observations due to its
limited sensing capabilities.

Table 2 also lists some of the various experiments per-
formed herein. These are designed to evaluate how algorithm
performance is impacted when changes are made to the verifi-
cation dataset or how a “hit” is defined. The details of these
experiments are discussed in section 3b.

d. Performance metrics used herein

Precipitation-type verification is usually performed using a con-
tingency table wherein the number of true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives (FNs)
are summed over all sites and times in the verification dataset.
These four elements can be combined into a multitude of differ-
ent indices, each one providing a unique definition of “goodness.”
An issue with verifying precipitation type is that some categories
are very rare, leading to an overabundance of TNs relative to the
other elements in the contingency diagram. As a consequence,
performance metrics that use TNs can asymptote to their extrema
if there are no measures taken to modulate its relative influence.
Some metrics ignore TNs and, hence, do not have this problem.
These include the POD, FAR, success ratio (SR), and bias
(Table 3), which are functionally related. Hence, an evalua-
tion of all four of these provides redundant information and
two can be eliminated. Herein, we choose to eliminate FAR

and SR, but this is a matter of preference. The overriding
results of this study are not affected by this choice (not shown).

An additional metric that makes use of TNs is required to
fully express all of the elements in the contingency table. As
noted above, this can be problematic. Two metrics that regu-
late the impact of high TNs are considered in this study: these
are HSS and the extremal dependence index (EDI; Ferro and
Stephenson 2011; Table 3). In HSS, a TN appears in both the
numerator and denominator, thus limiting its impacts on the
overall score. EDI is a function of both the POD and the false
positive rate (FPR), which is inversely proportional to TN,
but its influence is tempered by taking the logarithm of both
POD and FPR, which brings them into the same order of
magnitude. A concern with HSS is that as an observed event
becomes increasingly rare, it approaches 0, and, therefore,
may not provide a reliable discrimination of either goodness
or betterness. EDI, on the other hand, is independent of event
rarity. But, because it is designed for rare events, it is unclear
whether it can provide meaningful discrimination for more
commonly observed phases like RA and SN. The reader may
wonder about two other commonly used metrics: the Peirce
skill score (PSS) and the critical success index (CSI). When
there is a large TN relative to the other members of the con-
tingency diagram, PSS approximates to POD. CSI uses the
same three elements of the contingency diagram as POD,
FAR, and bias and hence does not provide unique informa-
tion about algorithm performance from POD and bias.

3. Intercomparison of the different algorithms’
performance metrics

a. Measures of algorithm goodness and betterness

We start with a comparison of the POD, HSS, EDI, and
bias for each algorithm using all ASOS refreezing categories
(i.e., FZRA, PL, and mixes that include either of these forms)
over the 5-yr retrospective. This evaluation assumes a hit oc-
curs if and only if the diagnosed phase exactly agrees with the
observation at the top of the hour. Hence, a diagnosis of
FZRAPL is considered a miss when the observation is
FZRA, even though the FZRA part of the diagnosis is cor-
rect. This experiment is referred to as “ASOS.”

The results for ASOS are shown in Fig. 2 and highlight two
important findings. First, the performance metrics disagree
about the goodness of the algorithms. For example, HP has a
very good bias, but its POD and HSS are quite low (22% and

TABLE 3. Mathematical expressions for each of the performance
metrics used in this paper.

Term Equation

Probability of
detection (POD)

TP
(TP1 FN)

False alarm
ratio (FAR)

FP
(TP1 FP)

Success ratio (SR) TP
(TP1 FP)

Bias (TP1 FP)
(TP1 FN)

Heidke skill
score (HSS)

2(TP3 TN2 FN3 FP)
(TP1 FP)(FP1 TN)1 (TP1 FN)(FN1 TN)

False positive
rate (FPR)

FP
(FP1 TN)

Extremal
dependence
index (EDI)

log(FPR)2 log(POD)
log(FPR)1 log(POD)

FIG. 2. The POD, HSS, EDI, and bias for each algorithm for
refreezing categories of the ASOS experiment.
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20%, respectively). Such disagreements are not surprising as
algorithms can be strong in some respects and weak in others.
HP’s excellent bias indicates it produces refreezing precipita-
tion at compatible rates to nature, but its low POD suggests
potential flaws in its logic. MB and SBC have comparatively
higher PODs, but their biases are also high, suggesting they
overproduce these types of precipitation. This too suggests
potential problems with logic.1

The second important finding from Fig. 2 is that the perfor-
mance metrics disagree on betterness. The bias suggests HP is
the best, while the other three metrics suggest SBC is the
best, albeit by only marginal amounts. HSS and EDI also dis-
agree on second place. HSS suggests HP is superior to MB,
while the opposite is true for EDI. Hence, betterness is not
able to be definitively declared.

In the preceding, all refreezing categories are combined
into a single set of statistics, but the most common way algo-
rithms are assessed is separately for each of the four cardinal
categories of RA, SN, FZRA, and PL (Bourgouin 2000; Manikin
et al. 2004; Manikin 2005; Wandishin et al. 2005; Reeves et al.
2014; Elmore et al. 2015; Reeves et al. 2016; Birk et al. 2021;
Harrison et al. 2022; Filipiak et al. 2023). Evaluating the rela-
tive performance of algorithms this way introduces more am-
biguities as goodness is strongly dependent not only on the
choice of metric but also on the phase (Table 4). Consider
MB}its PODs are competitive for both RA and FZRA, but
it has a rather high bias for FZRA. So, it is unclear whether
MB’s results can be considered good. Betterness is even more
problematic. Although SBC has the highest (or nearly the
highest) POD for all categories, its comparatively high bias
for PL makes a declaration of this algorithm as “best” a con-
troversial one. While HP has the best bias for most categories,
it too would be a controversial choice for best given its com-
paratively low PODs for FZRA and PL. One may wonder
how the statistics in Fig. 2 and Table 4 are altered when the
verification data are limited to the near 208C range. This was

tested by limiting observations to be within 658C. This re-
duces the PODs for RA by 10% for HP and MB and 11% for
SBC and similarly reduces the other skill scores. Because al-
most all FZRA and PL observations occur within this range,
these scores are not affected.

Before moving on, we stop to reflect on the relative value
of HSS versus EDI as revealed in Table 4. HSS is more vul-
nerable to the bias than EDI. For example, MB has a compar-
atively low HSS for FZRA that is likely due to its high bias,
whereas EDI appears to be more immune to the bias. This
may lead one to favor HSS over EDI as a measure of skill.
However, HSS has the problem of trending toward zero as
the event frequency decreases. This is evident for the PL cate-
gory, which has a comparatively small event frequency (Table 2).
In spite of the fact that EDI is designed specifically for rare
events, it does appear to give meaningful information about the
relative performance for RA and SN. Since HSS and EDI both
have different strengths and weaknesses, we continue to use them
both moving forward.

One may wonder about comprehensive skill scores that
provide a measure of the performance for all categories, such
as the Gerrity skill score (GSS; Gerrity 1992). An advantage
of the GSS is that it gives higher weighting to a less-common
phenomenon, thus preventing RA and SN from monopolizing
the score. When computed for all categories in Table 2, the
GSSs for HP, MB, and SBC are 89%, 87%, and 87%, respec-
tively. These are very close scores and do not convincingly in-
dicate betterness on the part of any algorithm.

b. Impacts of methodology on apparent goodness
and betterness

Some scores in Fig. 2 and Table 4 are close, leading one to
question their sensitivity to choices made in the process of
verification, such as the amount of time evaluated, the choice
of how to declare a hit, and many others. Indeed, there are
numerous ways the apparent goodness and sometimes better-
ness of algorithms can be altered by making reasonable
choices about what data to include in the verification and how
to define a TP (Reeves 2016). There is little consensus in the
scientific community on what data should be included in a
precipitation-type assessment or on how to define the ele-
ments in the contingency table. The experiments described
below are conducted to evaluate how various approaches im-
pact the verification metrics for refreezing precipitation. Each
of these represent valid ways to verify a precipitation-type
forecast. The number of observations in each of these experi-
ments is included in Table 2. The performance metrics for
each experiment for refreezing precipitation are provided in
Table 5. All experiments are compared against the ASOS ex-
periment, which is the same method described in section 3a
and highlighted in Fig. 2.

1) IMPACTS OF CHANGING WHAT IS CONSIDERED A HIT

Two experiments are conducted that widen the aperture of
what is considered a hit. In the first, “generous hit,” a TP is
declared if the observed phase at the top of the hour and the
algorithm have at least one constituent in common. Such a

TABLE 4. Performance metrics (expressed as percentages for
POD, HSS, and EDI) broken down by algorithm and phase. The
optimal values are given in boldface.

POD Bias HSS EDI

RA HP 97 1.02 89 97
MB 96 1.01 88 97
SBC 96 1.01 89 97

SN HP 94 0.98 92 97
MB 80 0.83 82 90
SBC 93 0.98 91 96

FZRA HP 28 0.59 34 62
MB 54 4.46 18 66
SBC 56 1.76 40 76

PL HP 6 1.61 5 41
MB 8 1.45 7 46
SBC 21 7.39 5 53

1 We stress that low PODs may only indicate potential flaws in
logic as model and observational error may have a nonnegligible
influence on the low PODs in this assessment.
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method was used in Reeves et al. (2014, 2016). This experi-
ment has the same number of observations as ASOS (Table 2).
Accordingly, generous hit has higher PODs than ASOS. How-
ever, the effectiveness of this approach is most clearly demon-
strated using bias and HSS. The former shows values well over
1, indicating an extreme apparent over prediction of refreezing
precipitation. The HSS scores suggest all algorithms barely per-
form better than random chance. EDI, because it is more im-
mune to the bias, is only somewhat decreased, suggesting all
algorithms are skillful.

A second experiment, “neighborhood approach,” is con-
ducted to evaluate how widening the aperture of a hit impacts
interpretation of performance (e.g., Ebert 2009). In neighbor-
hood approach, a TP is declared if any of the grid boxes in the
15 km surrounding each observation agree with the observation.
An FP is declared if the phase in question is diagnosed in any of
the surrounding grid boxes, but the phase was not observed.
This experiment also has the same number of observations as
ASOS (Table 2). The PODs for neighborhood approach are sig-
nificantly increased relative to ASOS (Table 5). This suggests
that the algorithms may suffer less from logic issues than from
minor positional errors due to model uncertainty. It is interesting

to note how differently the algorithms are impacted by this
change. HP has a 40% increase in its POD, while SBC has only
a 26% increase, suggesting HP may be more vulnerable to
model error than the other methods. As with generous hit, the
biases are quite high, HSSs are quite low, and EDI seems im-
mune to excessive bias. While somewhat higher than in gener-
ous hit, the low HSSs suggest that these algorithms are barely
improved relative to random chance and, as above, casts asper-
sions on this method of verification as an indicator of algorithm
performance.

2) IMPACTS OF ENHANCING THE

VERIFICATION DATASET

Two experiments are conducted that increase the number of
observations for verification. In the “AWOS” experiment, both
AWOS and ASOS are used for verification. This adds another
1327 sites to the list and increases the total number of observa-
tions by about 427000 (Table 2). Because the archive we accessed
for these data does not store 5-min observations, the top-of-the-
hour precipitation type is assumed to be the reported type that oc-
curs most closely to the top of the hour provided it occurs within
15 min of the top of the hour. AWOS are known to underreport
refreezing precipitation (i.e., FZRA and PL), which leads to in-
creased biases and decreased HSSs relative to ASOS (Table 5).
This experiment serves to underscore an important point: A bias
in the observations can exaggerate or reduce apparent biases in
the algorithms making them appear better or worse than they ac-
tually are. Notice that MB’s bias is significantly increased in
AWOS. This algorithm already had an elevated bias for refreez-
ing precipitation. Verifying against a dataset that has limited sens-
ing capabilities for this form of precipitation only serves to inflate
this bias, suggesting the algorithm is worse in this regard than it
actually is. A similar finding was reported in Reeves (2016). While
one can easily quantify the observational bias in each of these ex-
periments relative to the ASOS observations, the true bias in the
ASOS observations is not fully known. There may be biases in
the ASOS dataset that impact our ability to rightly declare good-
ness and betterness.

3) IMPACTS OF ENVIRONMENTAL UNCERTAINTY

Two experiments are conducted that test the sensitivity of
algorithm performance to environmental uncertainty. The
first of these, dubbed “ambiguous profiles” (or AP in Table 2)
limits the observation dataset to only those cases that are consid-
ered ambiguous. Herein, ambiguity is defined as an observation
whose Tw profile has an elevated warm layer with a maximum
Tw less than or equal to 1.58C and a surface-based cold layer
with a minimum Tw greater than 268C. Melting and refreezing
in such profiles are strongly dependent on microphysical con-
trols such as the degree of riming, evaporation/sublimation,
particle size distribution, and hydrometeor interactions (Reeves
et al. 2016; Carlin et al. 2021; Reeves et al. 2022). Therefore,
these profiles are more challenging to diagnose. Accordingly,
the POD, HSS, and EDI decrease and the biases slightly in-
crease (Table 5).

In the next experiment, “long duration” (LD in Table 1),
the verification is restricted to only those times when the

TABLE 5. The performance metrics (expressed as percentages
for POD, HSS, and EDI) for refreezing categories for all
experiments performed in this paper (see text for descriptions of
each experiment) and all algorithms. The best score for each
performance metric and experiment is indicated in boldface.

POD Bias HSS EDI

ASOS HP 22 1.16 20 61
MB 40 3.39 18 69
SBC 42 1.88 29 74

Generous hit HP 39 24.01 3 51
MB 56 30.25 3 64
SBC 56 26.84 4 66

Neighborhood approach HP 62 10.38 11 78
MB 73 17.84 7 83
SBC 68 12.06 10 82

AWOS HP 21 3.45 9 57
MB 40 11.77 6 66
SBC 40 4.31 15 72

Ambiguous profiles HP 14 1.35 6 16
MB 36 1.96 19 41
SBC 30 2.42 11 29

Long duration HP 31 1.59 24 69
MB 57 5.59 17 80
SBC 60 2.64 33 84

17 Jan HP 28 1.08 27 64
MB 49 2.48 28 74
SBC 50 1.55 39 77

Quality control HP 30 1.19 28 69
MB 56 4.10 22 80
SBC 59 1.74 43 85

ML-Hub HP 15 0.95 15 53
MB 23 2.61 13 55
SBC 26 1.60 20 61

Gold standard HP 22 1.16 20 61
MB 37 3.51 16 68
SBC 41 1.76 30 74
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observed precipitation type does not change during the 60-
min following the top of the hour, similar to Reeves et al.
(2014) and Reeves (2016). An additional restriction is added
to include only hours where there is precipitation at the top of
the hour, so algorithm performance is not injured by a dry
bias in nonprecipitating soundings. Hence, the observations in
this experiment are less ambiguous in terms of the temporal
consistency. The POD, HSS, and EDI are improved relative
to ASOS, but the biases are increased, suggesting a height-
ened overprediction of refreezing forms on the part of all al-
gorithms (Table 5).

4) IMPACTS OF CHANGING THE DURATION OF THE

EVALUATION PERIOD

Changing the time aperture can also impact the statistics.
This is demonstrated in the “17 January” (17 Jan in Table 2)
experiment, which is identical to ASOS except that only data
from the month of January 2017 are used. This was a very ac-
tive month for winter precipitation (Table 2). Limiting the
evaluation to a smaller time range is consistent with some pre-
vious investigations (Ikeda et al. 2013; Benjamin et al. 2016).
The performance metrics in 17 January are mostly improved
relative to ASOS (Table 5). However, this is not the case with
every individual month}some months have similar or even
degraded statistics relative to ASOS, thus underscoring the
fickleness of using shorter time spans to evaluate algorithm
performance.

5) IMPACTS OF RESTRICTING THE VERIFICATION DATA

At some sites/times, the thermal profile in the HRRR
model is incompatible with the observed phase. This could be
due to either model or observational error (Reeves et al.
2014; Reeves 2016; Landolt et al. 2019). Such a problem is
known to impact some precipitation-type algorithms more so
than others (Reeves et al. 2014; Reeves 2016). Five incompati-
bilities are identified between the HRRR thermal profiles and
the ASOS. These are

• observations of RA or RA mixes where the HRRR 2-m Tw

is subfreezing (3063 profiles),
• observations of FZRA, FZDZ, and mixes of these where
the HRRR 2-m Tw is above freezing (1103 profiles),

• observations of SN where there is an elevated warm layer
(2420 profiles),

• observations of PL or mixes that include PL where there is
not an elevated warm layer (841 profiles), and

• thermal profiles whose maximum RH is less than 80%
(2515 profiles).

These suspicious observation/profile pairs are removed in
an experiment called “quality control” (or QC in Table 2). In
quality control, POD, HSS, and EDI are improved (Table 5).
The changes to bias are nominal in most algorithms, indicat-
ing that the improvements to the other scores are legitimate
indicators of better performance. This, of course, stands to
reason}eliminating obvious erroneous pairings should im-
prove the apparent performance of an algorithm. But there is
one curious aspect of quality control, that is, the degree to

which the algorithms are benefitted by this change. MB and
SBC are appreciably more benefitted. The reason for this is
the dominance of FZRA in the refreezing dataset}about
50% of the observations are FZRA (Table 1). As will be dem-
onstrated below, both MB and SBC are more biased toward
FZRA, whereas HP is biased away from FZRA.

Several forms of precipitation cannot be automatically de-
tected and are only reported when a human observer aug-
ments the report. These include PL and all types of mixes. It
is logical, then, to presume that the full ASOS dataset may be
subject to some bias against these forms of precipitation. To
account for this, an experiment called “ML-Hub” is per-
formed. In this experiment, the observations are limited to
only medium- and large-hub airports (Fig. 1) between 0600
and 2000 local time. The designation of medium and large
hubs is based on the 2021 FAA categorizations. These airports/
times are most likely to have a CWO on shift to curate the
automatically generated observations. This experiment yields
considerably lower POD, HSS, and EDI (Table 5). This is al-
most entirely due to mixes, which account for a larger fraction
of the total number of refreezing events in ML-Hub than in
ASOS (68% versus 26%; Table 2). Allowing more mixes in
an algorithm increases the degrees of freedom and opportu-
nity for inexact agreement with the observations.

6) OVERRIDING RESULTS OF METHODOLOGY IMPACTS

The overriding result from these experiments is that goodness
is a function of the methodology used to measure it. Consider
the range of PODs from MB. At its best, it has a POD of 73%,
but at its worst, it has a POD of 23%. Taken in isolation from
the other algorithms, one could very easily choose to embrace
or reject this algorithm, depending on what set of statistics
is presented. The same is true for the other algorithms.

Betterness is also a function of the methodology. In most ex-
periments, HP has the best bias, while the best POD, HSS, and
EDI mostly belong to MB or SBC. If one were to try and mix
and match statistics by applying a different set of rules to each
algorithm, the apparent betterness could change dramatically.
As an example, compare the PODs for HP from neighborhood
approach to the scores from SBC for ML-Hub. This comparison
suggests HP is significantly better. But as Table 5 demonstrates,
when these two algorithms are compared using an identical
methodology and observations, SBC has the higher PODs.

Clearly, the choice of data used to verify algorithms can result
in profoundly different conclusions about algorithm perfor-
mance. One may wonder if a gold-standard set of observations
can be created to verify algorithms that may result in more clar-
ity on goodness and betterness. This is attempted herein by com-
bining the rules used in the QC, long-duration, and ML-Hub
experiments into a single experiment referred to as “gold stand-
ard” (GS in Table 2). This combination limits the assessment to
less ambiguous environments with a higher degree of quality
control and human curation. The performance metrics for this
experiment are very similar to those for ASOS. The best-
performing algorithm depends on the verification metric, and
the differences that do exist in scores are mostly nominal, sug-
gesting there is no obvious best. It is discouraging to note that
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even with a high degree of vetting, the apparent statistical per-
formance of algorithms is similar to the unvetted ASOS experi-
ment and underscores the very difficult problem in attempting
to verify precipitation-type algorithms.

Such findings have important implications for developers
and decision-makers alike. Goodness can only be understood
by the receiving agent if exact details on the methodology
and the potential weaknesses of that method are fully dis-
closed. Given the dependency of betterness on the choice of
methodology, an indisputable declaration of best may not be
possible.

c. Statistical significance of results

Before moving on, a brief discussion about the statistical
significance of the results is merited. This was evaluated fol-
lowing the methodology of Jolliffe (2007). Namely, 1000 itera-
tions of bootstrapping were performed to determine the 95%
confidence intervals. For the sake of concision, this discussion
is limited to POD and only for select experiments. The confi-
dence intervals for ASOS indicate that the lower PODs for
HP are statistically significant, while differences between MB
and SBC are not (Table 6). This is the case for most of the
experiments}MB and SBC do not have statistically different
PODs (shown for gold standard in Table 6). What is curious
to note is that the 95% confidence intervals for ASOS are
quite a bit smaller than the variability of PODs obtained by
changing the methodology (cf., Tables 5 and 6). This holds
true even for comparatively small datasets, wherein the confi-
dence interval is larger (e.g., gold standard; Table 6). Such a
result underscores the importance of methodology}changes
in methodology affect the interpretation of how an algorithm
appears to perform in ways that far exceed ordinary sampling
error.

4. Algorithmic biases and their impacts

a. A case study demonstrating algorithmic bias

The goodness of an algorithm is limited by three things: ob-
servational uncertainty, the temporal/spatial variability of pre-
cipitation type [both of which have already been investigated
in previous work (Reeves 2016)], and the inherent biases
within each algorithm’s logic. Algorithmic biases can present
decision-makers with what may appear to be a confident pre-
diction of a certain phase when, in fact, the environment may
be conducive to other outcomes. Let us consider a case study

that occurred in northern Illinois on 12 February 2019. The
mPING observations between 0400 and 0800 UTC and ASOS
reports at 0600 UTC on this day show FZRA between Inter-
states 90 and 88 (I-90 and I-88; Fig. 3a). Time sequences of
the 5-min reports from four ASOS sites in this region (indi-
cated in Fig. 3a) show that FZRA and/or FZRAPL are re-
ported consistently between 0400 and 0930 UTC at all of
these sites (Fig. 3b).

As this was not an event characterized by rapid temporal/
spatial shifts in precipitation type, one might expect all three
algorithms to converge on a diagnosis that includes FZRA in
the region between I-90 and I-88. To evaluate whether this is
true, forecasts of precipitation type are created from the
1- and 6-h HRRR forecasts valid at 0600 UTC (Fig. 4). Both
lead times and all algorithms diagnose FZRA and FZRA
mixes south of I-88, but between I-88 and I-90, important dif-
ferences emerge. HP diagnoses PLSN, while MB and SBC di-
agnose FZRA and FZRA mixes. This difference may lead to
different actions on the part of stakeholders. But when com-
paring like algorithms, differences are minor. For example,

TABLE 6. The PODs and 95% confidence interval for select
experiments. The best score for each performance metric and
experiment is indicated in boldface.

Expt Algorithm POD

ASOS HP 22 6 1.0
MB 40 6 1.2
SBC 42 6 1.2

Gold standard HP 22 6 3.4
MB 37 6 4.0
SBC 41 6 4.1

FIG. 3. The (a) mPING observations between 0400 and 0800 UTC
and ASOS observations at 0600 UTC 12 Feb 2019 and (b) time
sequences of precipitation type from the four ASOS stations
in (a) between 0100 and 1300 UTC 12 Feb 2019. White bars in
(b) indicate no precipitation type was observed.
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both HP forecasts show this area as having mostly PLSN.
Such correlation across lead times has the potential to in-
crease forecaster confidence that the predicted outcome is
more likely. In this example, the HRRR forecast may lead
forecasters to believe that FZRA is unlikely.

Time trends of the predicted phase from the 0000 UTC
12 February 2019 forecast cycle give additional insight into al-
gorithmic biases (Fig. 5). For the time range and stations
shown, the majority of HP diagnoses are for SN or PLSN.
Only 25% are diagnoses that include FZRA and these are not
persistent in time or location, as is the case in the observations
(cf. Figs. 3b and 5a). By contrast, MB more consistently produ-
ces FZRA or FZRAmixes. A bias toward FZRA is a deliberate
choice on the part of the MB developers (E. Lenning 2022, per-
sonal communication), so this prediction fromMB is not surpris-
ing. Last, SBC appears to be somewhat biased toward PL, at
least at some times and locations.

The reason for such algorithm-to-algorithm variation is
that the temperature profiles between I-90 and I-88 are

ambiguous, as indicated at the four ASOS sites using the 6-h
forecast valid at 0600 UTC 12 February 2019 (Fig. 6). Each
profile has a modest elevated warm layer and a surface-based
cold layer that is warmer than ice nucleation. Hence, refreez-
ing is dictated by whether ice can survive the melting layer or
be produced within the subfreezing layer. The subtle drying in
the lowest 500 m of each sounding adds an additional compli-
cation as it suggests some of the smaller particles may be sub-
limated, which could impact the reported phase at the surface
(Carlin et al. 2021). Based only on these soundings, no one al-
gorithm stands out as obviously correct or incorrect.

b. Algorithmic bias across the climatology

The biases observed in this event are common to each algo-
rithm as demonstrated through consideration of statistics
from the ambiguous profiles experiment. HP diagnoses 33%
of these profiles as SN and another 28% as PLSN (Fig. 7a).
Hence, this algorithm trends toward colder diagnoses in

FIG. 4. The (top) 6-h and (bottom) 1-h forecasts of precipitation type by each algorithm valid at 0600 UTC 12 Feb 2019. The concentric
gray and black rings with a plus sign indicate the four surface stations from Fig. 3.
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ambiguous situations. Conversely, MB is biased toward
FZRA, having 66% of its diagnoses be for FZRA or FZRA
mixes (Fig. 7b). SBC is biased toward PL and PL mixes
(79%) with the remainder of soundings being classified as
FZRA (Fig. 7c). In the case of this dataset, MB has the best rep-
resentation of truth (Table 5). This is because the majority of
the ambiguous profiles are observed as FZRA. So, the bias to-
ward FZRA in this dataset is to MB’s advantage. However, it is
possible that observational error could be influencing these sta-
tistics and that the true precipitation phase may be better repre-
sented by one of the other algorithms.

The above biases are only evident when the thermal profile
is ambiguous. To demonstrate this, the distribution of diagno-
ses for profiles characteristic of FZRA is computed. These
profiles are defined as having an elevated warm layer whose
maximum temperature exceeds 28C and whose minimum tem-
perature in the surface-based cold layer is warmer than 268C.
MB and SBC diagnose 95% and 100% of these profiles as
FZRA or FZRA mix, respectively. HP has a lower percent-
age (61%). This is because HP uses temperature rather than
Tw to discriminate between FZRA and RA. 28% of the
soundings in this collection are diagnosed as RA or RA mix
by HP because of this choice in logic. A simple change in logic
would result in 89% of these profiles being diagnosed as
FZRA or FZRA mix.

c. Algorithmic biases in an ensemble forecast

One might expect that the range of possible solutions afforded
in ensemble forecasts would compensate for algorithmic bias.
However, this is not the case. The 6-h HRRR ensemble
(HRRR-e; Kalina et al. 2021) forecasts initialized at 0000 UTC
12 February 2019 show that the most-likely precipitation type
for each algorithm is similar to the deterministic solutions (cf.
Figs. 6 and 9). Herein, the most-likely precipitation type is the
category that is most frequently diagnosed when the algorithms
are applied to individual ensemble members. At this lead time,
HP produces mostly PL between I-90 and I-88 (Fig. 8a), a slight
variation on the PLSN produced by the deterministic HRRR.
Ensemble forecasts for MB have mostly FZRAPLSN and
FZRA in this area (Fig. 8b), and SBC produces FZRA and
FZRAPL (Fig. 8c). These forecasts are nearly identical to their
deterministic counterparts (Figs. 5b,c,e,f).

While the most likely precipitation type may be something
other than FZRA, this does not imply a zero probability of
FZRA. Time sequences of the probability of FZRA and/or
FZRA mixes at each ASOS location show that at Rockford,
the probabilities are low by each algorithm. This is because
the HRRR-e is predicting colder-than-observed temperatures
at this site in the lower levels of the atmosphere (not shown).
Additionally, HP fails to give a diagnosis at Rockford, Illinois,
and O’Hare Airport (Chicago, Illinois) at select times because
the minimum threshold on precipitation rate was not met and
no diagnosis was made for any of the members. Nevertheless,
the biases noted above are apparent at other times/locations,
even though there is now an ensemble of solutions. HP has
very low FZRA probabilities between 0400 and 1000 UTC
(Fig. 9a), MB has comparatively high probabilities (Fig. 9b)
and SBC has slightly lower probabilities than MB (Fig. 9c).
Hence, even though there is a diversity of solutions for the
thermodynamic profiles, it is not sufficient to overcome the in-
herent biases in the algorithms. In the case of HP, the probabil-
ity of FZRA may be too low to be considered actionable by
forecasters and one could argue that this forecast of precipita-
tion type is under dispersive. Before moving on, it is important
to note that although the HP algorithm has the least-accurate
forecast for this event, this is not always the case. Events can be
found where the other algorithms appear to be the least accurate.

d. Using a multi-algorithm approach

Algorithmic biases are not an unknown phenomenon.
These biases are handled within the NWS’s Unified Post Pro-
cessor in a “ensemble-like” fashion wherein all algorithms are
applied and the most-likely solution provided to forecasters
(Manikin et al. 2004; Manikin 2005). A similar approach may
be merited moving forward wherein multiple algorithms are
applied to each member of an ensemble, effectively expand-
ing the ensemble membership by a factor of 3, and the proba-
bility across the entire distribution computed. This is tested
with the 12 February 2019 HRRR-e forecasts. These probabilities
are provided in Fig. 9d in an experiment called “multi-algorithm.”
The probabilities using this approach are expected}somewhat
less than in MB and SBC, but more than in HP. Between about

FIG. 5. The time trends of predicted phase for (a) HP, (b) MB,
and (c) SBC for the forecast initialized at 0000 UTC 12 Feb 2019.
The locations of the stations are indicated in Fig. 4a.
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0500 and 1000 UTC, probabilities are mostly in excess of 45%,
which is a compelling fraction to motivate action.

The performance of the multi-algorithm approach is eva-
luated by computing the probability of precipitation type for

the full ASOS dataset. In this experiment, an algorithm is as-
sumed to produce a given category if that category occurs
in isolation or as a mix. For example, suppose HP, MB, and
SBC diagnose FZRASN, FZRAPL, and FZRA, respectively.

FIG. 6. Profiles of temperature, Tw, and dewpoint at (a) Rockford, (b) DuPage, IL, (c) O’Hare Airport, and (d) Midway Airport
(Chicago, IL) from the 6-h forecast initialized at 0000 UTC 12 Feb 2019. The locations of the stations are indicated in Fig. 4a. The vertical
dashed lines indicate 08C and the assumed ice-nucleation temperature for SBC (268C).

FIG. 7. Percent of each phase diagnosed for the soundings in the ambiguous profiles experiment.
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Using our rules, the probability of FZRA is 100% because it
is diagnosed by all three algorithms either as a constituent of
a mix or in isolation. The probabilities of SN and PL are both
33.3% because they are each diagnosed as a constituent of a
mix by only one algorithm apiece.

Whether or not using the algorithms in an ensemble-like
fashion provides enhanced decision support depends on the
phase and the method of verification. For any one category,
regardless of whether using the receiver operating characteris-
tic (ROC; Marzban 2004) curves or performance diagrams,
the 66% probability has the optimal performance relative to
other probability thresholds. When compared to the method-
ologies used in ASOS and generous hit, the relative superior-
ity of multi-algorithm is unclear. It is obviously beneficial for
RA (Figs. 10a,b). But for SN, a probability of 66% has only a
slightly higher POD-FPR than for any one algorithm (1.17%;
Fig. 10c). The POD 1 SR for SN at a probability of 66% is
higher than for any one algorithm by only 0.22% (Fig. 10d).
Given all of the uncertainties discussed above, the signifi-
cance of such differences is highly questionable. In the
case of FZRA, the POD-FPR for the generous hit method
from SBC is 4.91% higher than for the 66% probability
(Fig. 10e), but the POD 1 SR for the 66% probability is
markedly higher (15.57%) than from any one algorithm
(Fig. 10f). PL and refreezing precipitation are similarly am-
biguous on the value of using a multi-algorithm approach
when using ROC diagrams, but are clearly benefitted according
to the combined performance diagram metrics (Figs. 10g–j).
This may be partially due to the unfiltered influence of TNs
in the ROC diagram. Last, it may be possible to see a more
conclusive benefit if more algorithms are included in the
analysis so that more probability thresholds can be obtained.
But, we cannot definitively state there is benefit to using a
multi-algorithm approach using verification metrics based on
this analysis.

5. Conclusions

In this paper, the use of performance metrics to declare the
“goodness” and “betterness” of precipitation-type algorithms is
explored. Goodness is defined as the performance of an individ-
ual algorithm as dictated by performance metrics and betterness
is defined as the superior performance of one algorithm relative
to another. To assess this, three modern precipitation-type algo-
rithms are compared using identical initial conditions for a 5-yr
retrospective of precipitation-type observations from different
combinations of the ASOS and AWOS networks.

There are four key findings to this work. First is that good-
ness and betterness are a function of the performance metric
and hydrometeor phase. Because the different performance
metrics define goodness in different ways, it is possible for an
algorithm to have excellent scores for some metrics while hav-
ing low scores for others. This was the case with HP. When
applied to refreezing categories (i.e., FZRA, PL, and mixes
that include either of these), its bias was quite good, while its
POD was rather poor, meaning the goodness of this algorithm
cannot be objectively declared. Rather, its goodness is depen-
dent on the needs of the end user. If the need is for the algo-
rithm to accurately predict the frequency of the phenomena
and spatial/temporal errors are irrelevant, HP is clearly the
best option. But if spatial/temporal accuracy is more impor-
tant, this algorithm is the worst of the three considered, for
this one category. The apparent betterness also depends on the
phase. For example, HP had the highest POD for RA and SN,
while SBC had the highest POD for FZRA and PL. This depen-
dence on the choice of performance metric and phase makes the
exercise to declare the goodness and betterness of a precipita-
tion-type algorithm difficult and perhaps even impossible.

The second key finding of this work is that goodness and bet-
terness are functions of the observational data used to verify the
algorithms. Multiple approaches were considered herein, each

FIG. 8. The 6-h forecasts of most-likely precipitation type by each algorithm valid at 0600 UTC 12 Feb 2019 from the HRRR-e forecast
system. The concentric gray and black rings with a plus sign indicate the four surface stations from Fig. 3.
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one a plausible option. As above, goodness varied depending on
the methodology. For example, MB had a POD as low as 23%
and as high as 73% for refreezing categories depending on what
data were used for verification. Betterness also varied. All
algorithms had instances of having the most optimal of one
or another metric, depending on the experiment. This fur-
ther obfuscates one’s ability to unambiguously declare the
relative superiority of an algorithm. We stress that the dif-
ferent methodologies used herein are all reasonable choices
one may make in the process of verification. Yet, they dif-
ferently impact the interpretation of results and could influ-
ence whether or not an individual algorithm is adopted for
operational use or rejected.

The third key finding of this research is that the algorithms
have clear and impactful biases in ambiguous environments

that are not offset even when applied to ensemble forecasts.
In the case of HP, the majority of profiles in these settings are
diagnosed as SN or a SN mix. MB is biased toward FZRA
and FZRA mixes, while SBC is somewhat biased toward PL
but tends to have a more even distribution between FZRA, PL,
and FZRAPL than the other two. The impacts of these biases
were demonstrated using a prolonged FZRA event in northern
Illinois. In a populated corridor between I-90 and I-88, the biases
of each algorithm affected the diagnosed phase. To evaluate the
impacts of algorithmic biases on ensemble forecasts, the three al-
gorithms were applied to HRRR-e forecasts of this event. The
same biases were noted in the most-likely phase predicted using
each algorithm. Probabilities of FZRA or FZRA mixes by each
algorithm showed that HP, which tends to be biased against
FZRA, were quite low, having only one member diagnosing this
phase at some times and locations.

The final key finding of this research was prompted by the
above. The fact that the HRRR-e forecasts did produce high
probabilities of FZRA for some algorithms suggested that using
all algorithms together to amplify the apparent membership of
an ensemble could lead to improved decision support by provid-
ing forecasters with multiple solutions. Indeed, for the case study
evaluated herein, this approach led to higher FZRA probabili-
ties, in accordance with what was observed. However, when ap-
plied to the 5-yr climatology of events using performance
metrics, the value of the multi-algorithm approach was less obvi-
ous. As above, whether a multi-algorithm approach is superior
depends on the performance metric and phase.

In closing, we make the final recommendations. First, while a
statistical evaluation of precipitation-type algorithms is an essen-
tial step to ensuring reasonable performance, the use of these
metrics to declare the superior performance of one algorithm
over another is of questionable merit. There are many con-
tingencies that if changed in only small}but scientifically
defensible}ways, could consequentially alter the conclusions
of such an analysis. A potentially more valuable approach is
to also consider the decision-support capabilities provided by
an algorithm when evaluating their use in operations. In the
case of MB, this algorithm is purposefully biased toward
FZRA and FZRA mixes because it is easier for a forecaster
to “tone down” an overprediction of something rather than
anticipate something not predicted at all (E. Lenning 2022,
personal communication). So, this algorithm’s biases are not
necessarily a weakness, even though statistically speaking, its
bias is not as good as HP’s. We recommend that future assess-
ments of algorithms for operations include consideration of
decision-support capabilities that may not be represented
within a statistical performance assessment.

Second, to embrace a single-algorithm approach is to embrace
its biases, even when using ensemble forecasts. These biases can
have negative impacts on stakeholders. Given the many ongoing
efforts to create new methods for diagnosing the precipitation
phase, a more robust approach may be to use multiple algo-
rithms. We recommend consideration of this technique as this
additional axis of uncertainty may complement the forms of un-
certainty already expressed in ensemble forecasts. This can pro-
vide decision-makers with a greater appreciation of the range of
potential outcomes. Ultimately, this could improve a forecaster’s

FIG. 9. The time trends of the probability of FZRA (or FZRA
mix) for (a) HP, (b) MB, (c) SBC, and (d) using a multi-algorithm
approach for the HRRR-e forecast initialized at 0000 UTC 12 Feb
2019. The locations of the stations are indicated in Fig. 4a. The
light-gray cells with x marks in (a) represent times when the HP al-
gorithm did not diagnose any precipitation type for any members
of the ensemble.

R E E VE S E T A L . 2587DECEMBER 2023

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 12/12/23 05:19 PM UTC



ability to provide more meaningful impacts-based decision sup-
port to stakeholders.
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